

Stormwater Report

LAND SURVEYING

In Support Of

A Site Plan Approval Application

For 57 Perkins Row (Parcel ID #58-25) Topsfield, Ma

PREPARED BY: Hancock Associates #27296

PREPARED FOR: Kevin Whelan March 2024 *Revised March 2024*

Table of Contents

Introduction	1
Standard 1: No New Untreated Discharges	1
Standard 2: Peak Rate Attenuation	1
Standard 3: Recharge	3
Standard 4: Water Quality	4
Standard 5: Land Uses with Higher Potential Pollutant Loads	4
Standard 6: Critical Area	4
Standard 7: Redevelopment	4
Standard 8: Construction Period Pollution Prevention and Erosion & Sedimentation Control	4
Standard 9: Operations and Maintenance Plan	7
Standard 10: Prohibition of Illicit Discharges	.10

Tables

	e 1: Peak Rates of Runoff	3
--	---------------------------	---

Appendices

Appendix I Locus Map Appendix II Topsfield, MA Map of Areas of Severe Limitations Appendix III NRCS Soils Map Appendix IV Soil Testing Logs Appendix V Existing and Proposed Drainage Figures Appendix VI Hydrocad Output Appendix VII Hydrocad Output for Recharge Volume

Introduction

Kevin Whelan proposes to construct a four (4) bedroom residential house on 57 Perkins Row, Topsfield, MA. Associated improvements will include paved driveway, a stormwater management system, and a new septic system. The project area is currently comprised of a developed residential yard with a single-story house. The project area is accessed by Perkins Row and consists of 8.2± acres. The property is bounded by undeveloped wooded land owned by Natalie M. Whalen to the east and northwest and west, residential land owned by Joseph John Dubinski and Alicia Mercedes Keating Dubinski to the southwest, undeveloped wooded land owned by the Mass Audubon Society to the south, and the Ipswich River to the south.

The project site is located to the north of the Ipswich River and to the south of bordering vegetated wetlands. In the existing condition, stormwater flows overland to both the wetlands and Ipswich River. The proposed stormwater system was designed to mimic the existing drainage pattern.

The proposed stormwater management system will include infiltration trenches along the proposed driveway and three subsurface infiltration fields. The proposed subsurface infiltration fields will collect roof runoff and will reduce peak rates of runoff by promoting infiltration. Overflow from the infiltration fields will drain to the wetlands or the Ipswich River via overland flow through an emergency flow area drain, mimicking existing drainage patterns.

The subject property is located within a red soil zone, indicating sever-slow percolation, according to the Topsfield, MA Map of Areas of Severe Soil Limitation (Appendix II)

The proposed stormwater management system was designed to meet the Stormwater Management Standards described in the Massachusetts Stormwater Handbook. The following report describes the system's compliance with these standards.

March 2024 Revision

This report has been revised based on comments from Gerry McDonald, the Topsfield Stormwater Consultant, dated March 8, 2024. The changes made are comprised of matching elevations in HydroCAD to the Site Plans, modifying the infiltration trench outlet device, and relocating AD2.

Standard 1: No New Untreated Discharges

The Massachusetts Stormwater Handbook states that no new stormwater conveyances may discharge untreated stormwater directly to or cause erosions in wetlands or waters of the Commonwealth. The project does not include new stormwater conveyances.

Standard 2: Peak Rate Attenuation

The Massachusetts Stormwater Handbook states that stormwater management systems shall be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. A summary of the existing and proposed discharge rates follows. The proposed condition discharge rates of runoff are at or below the existing rates to the same discharge points. Please see the attached "Existing Drainage Figure" and "Proposed Drainage Figure" (Appendix IV) and HydroCAD output (Appendix V) for more information.

For the purpose of these calculations the following assumptions were made:

- The same total watershed area of the drainage areas is used to compare the existing and proposed.
- The Natural Resources Conservation Service (NRCS) Web Soil Survey of Essex County defines soils in the project area as:
 - o 405B, Charlton fine sandy loam, 3 to 8 percent slopes, Hydrologic Soil Group B
 - o 405C, Charlton fine sandy loam, 8 to 15 percent slopes, Hydrologic Soil Group B
 - o 406D, Charlton fine sandy loam, 15 to 25 percent slopes, very stony, Hydrologic Soil Group B

On-site soil testing confirmed that all soils are sandy loam. For the purposes of this calculation, all soils are assumed to be Hydrologic Soil Group B.

Two drainage areas have been modeled to represent the existing condition:

- Drainage Area EX1 consists of a developed residential yard, paved area, and roof area. Stormwater runoff from EX1 drains via overland flow to the wetlands and Ipswich River along the southern property line (Discharge Point DP1).
- Drainage Area EX2 consists of a developed residential yard, paved area, and roof area. Stormwater runoff from EX2 drains via overland flow to the wetlands in the northern portion of the property (Discharge Point DP2).

In the proposed condition a stormwater management system will collect and treat stormwater runoff from the project site. This system will include a system of roof drains doing to subsurface infiltration fields as well as surficial infiltration trenches. Four main drainage areas have been modeled to represent the proposed condition:

- Drainage Area PR1A will consist of landscaped area. Stormwater flow from PR1A will drain via overland flow to the wetlands and Ipswich River along the southern property line (Discharge Point DP1).
- Drainage Area PR1B will consist of roof area. Stormwater flow from PR1B will drain to the subsurface infiltration field IF3, via a network of pipes. Overflow from IF3 will discharge from AD3 and drain via overland flow to the wetlands and Ipswich River along the southern property line (Discharge Point DP1).
- Drainage Area PR2A will consist of landscaped area. Stormwater flow from PR2A will drain via overland flow to the wetlands in the northern portion of the property (Discharge Point DP2).
- Drainage Area PR2B will consist of paved driveway area. Stormwater flow from PR2B will drain overland to the infiltration trenches. Overflow from infiltration trenches will drain via overland flow to the wetlands in the northern portion of the property (Discharge Point DP2).
- Drainage Area PR2C will consist of roof area. Stormwater flow from PR2C will drain to the subsurface infiltration field IF1, via a network of pipes. Overflow from IF1 will discharge from AD1 and drain via overland flow to the wetlands in the northern portion of the property (Discharge Point DP2).
- Drainage Area PR2D will consist of roof area. Stormwater flow from PR2D will drain to the subsurface infiltration field IF2, via a network of pipes. Overflow from IF2 will discharge from AD2 and drain via overland flow to the wetlands in the northern portion of the property (Discharge Point DP2).

The following table compares the peak rates of runoff under the existing and proposed conditions using the latest Atlas-14 Precipitation Data:

	Peak Rate (cfs)									
Discharge	2-Year (3.27" Rain	2-Year Storm10-Year Storm?7" Rainfall Depth)(5.17" Rainfall Dept		r Storm Ifall Depth)	100-Year Storm (8.17" Rainfall Depth)					
i onit	Existing	Proposed	Existing	Proposed	Existing	Proposed				
DP1	0.29	0.21	1.07	0.84	2.65	2.12				
DP2	0.33	0.13	0.99	0.57	2.26	2.12				

Table 1: Peak Rates of Runoff

cfs – Cubic Feet per Second

Standard 3: Recharge

The Massachusetts Stormwater Handbook states that loss of annual recharge to groundwater shall be eliminated or minimized. The annual recharge from the post-development site shall approximate the annual recharge from the pre-development conditions based on soil type. Recharge volumes are provided for all of the proposed impervious areas. For the purpose of these calculations, all of the development areas are considered to be Hydrologic Soil Group B. The required recharge volume is 0.35" multiplied by the area of impervious surfaces. Please see the attached Hydrocad summaries for the recharge volumes provided within the infiltration basin (Appendix VI). The volumes is as follows:

Required Recharge Volume, HSG B = Target Depth * Impervious Area = 0.35" * 7,180 SF = 209 CF

The recharge volume is provided below the top of the infiltration trenches and the rim of the overflow drains in the infiltration trenches. The total volume provided is 1,574 cubic feet. Since the volume provided is greater than the required recharge volume, the standard is met.

The Massachusetts Stormwater Handbook states that the recharge volume must drain within 72 hours. Observations in deep hole soil testing performed on-site indicate that the soil that the chamber system will be installed upon is sandy loam. Please see the soil testing logs in Appendix IV. The following "drawdown" calculation assumes a Rawl's Rate of 1.02 inches per hour, corresponding to texture class "Sandy Loam".

```
Infiltration Trenches:
Drawdown Time = Storage Volume / (Rawl's Rate * Bottom Area)
= 928 CF / (1.02 in/hr * 1,160 SF) = 9.4 Hour
Infiltration Field IF1:
Drawdown Time = Storage Volume / (Rawl's Rate * Bottom Area)
= 220 CF / (1.02 in/hr * 320 SF) = 8.1 Hour
```

Infiltration Field IF2: Drawdown Time = Storage Volume / (Rawl's Rate * Bottom Area) = 206 CF / (1.02 in/hr * 300 SF) = 8.1 Hour

Infiltration Field IF3: Drawdown Time = Storage Volume / (Rawl's Rate * Bottom Area) = 220 CF / (1.02 in/hr * 320 SF) = 8.1 Hour

Since the design drawdown times are less than 72 hours, the requirement is met.

Standard 4: Water Quality

The Massachusetts Stormwater Handbook states that systems shall be designed to remove 80% of the average annual post-development construction load of Total Suspended Solids (TSS). The treatment BMP's have been sized to provide at least 80% TSS removal and measures will be taken for long-term pollution prevention.

According to the Massachusetts Stormwater Handbook, the proposed infiltration basin is the be sized to treat 1" of stormwater volume over the contributing impervious areas. The water quality volume calculation is as follows:

Required Water Quality Volume = 1" * Impervious Area = 1" *8,179 SF = 682 CF

The water quality volume is provided below the top of the infiltration trenches and the rim of the overflow drains in the infiltration fields. The volume provided is 1,574 cubic feet. Since the volume provided is greater than the required water quality volume, the standard is met.

Standard 5: Land Uses with Higher Potential Pollutant Loads

The proposed project is not a Land Use with Higher Potential Pollutant Load (LUHPPL).

Standard 6: Critical Area

The proposed project discharges to wetlands which are a tributary to the Ipswich River. The infiltration systems have been sized to treat 1" of stormwater volume over the contributing impervious areas as described under Standard 4.

Standard 7: Redevelopment

The proposed project is not a redevelopment.

Standard 8: Construction Period Pollution Prevention and Erosion & Sedimentation Control

Best management practices (BMP) for erosion and sedimentation control are staked, silt fences, compost wood fiber sock, hydro seeding, and phased development. Many stormwater BMP technologies (e.g., infiltration technologies) are not designed to handle the high concentrations of sediments typically found in construction runoff and must be protected from construction-related sediment loadings. Construction BMP's <u>must</u> be maintained. In developing the proposed project certain measures will be implemented to minimize impacts erosion and sedimentation could have on surrounding areas. This section addresses items that involve proper construction techniques, close surveillance of workmanship, and immediate response to emergency situations. The developer must be prepared to provide whatever reasonable measures are necessary to protect the environment during construction and to stabilize all disturbed areas as soon as construction ends. Construction period pollution prevention and erosion and sediment control shall meet the requirements for the 2022 EPA Construction General Permit for all projects requiring coverage under the CGP.

Pre-Construction

- 1. The contractor shall have a stockpile of materials required to control erosion on-site to be used to supplement or repair erosion control devices. These materials shall include, but are not limited to compost wood fiber sock, silt fence, compost wood fiber sock and crushed stone.
- The contractor is responsible for erosion control on site and shall utilize erosion control measures where needed, regardless of whether the measures are specified on the plan or in the order of conditions.

Preliminary Site Work

- 1. Excavated materials should be stockpiled, separating the topsoil for future use on the site. Erosion control shall be utilized along the down slope side of the piles and side slopes shall not exceed 2:1.
- 2. If intense rainfall is anticipated, the installation of supplemental straw bale dikes, silt fences, or armored dikes shall be considered.
- 3. Unsuitable excavated material shall be removed from the site.
- 4. Construction entrance shall be installed.
- 5. Existing catch basins shall be protected with silt sacks.

Ongoing Site Work

- 1. Erosion control measures shall be regularly inspected and replaced as needed.
- 2. Dewatering shall be done in a manner so as not to transmit silt, sand or particulate matter to the receiving water or existing drainage system.

Landscaping

- 1. Landscaping shall occur as soon as possible to provide permanent stabilization of disturbed surfaces.
- If the season or adverse weather conditions do not allow the establishment of vegetation, temporary mulching with straw, wood chips weighted with snow fence or branches, or other methods shall be provided.
- 3. A minimum of 4 inches of topsoil shall be placed and its surface smoothed to the specified grades.
- 4. The use of herbicides is strongly discouraged.
- 5. Hydro seeding is encouraged for steep slopes. Application rates on slopes greater than 3:1 shall have a minimum seeding rate of 5-lbs/1000 SF. A latex or fiber tackifier shall be used on these slopes at a minimum rate of 50 lbs. of tackifier per 500 gallons of water used.

57 Perkins Row – Construction Phase Maintenance

Operations and Maintenance Log Inspections for Year:

Structural Best Management Practice (Frequency)	Action	Date Completed	Completed By	Comments
Compost Wood Fiber Sock and Silt Fence	Inspect/ Clean			
Inspect weekly and after	Inspect/ Clean			
major storm event.	Inspect/ Clean			
	Inspect/ Clean			
Proposed Catch Basin Silt Sock	Inspect/ Clean			
Inspect weekly and after major storm event.	Inspect/ Clean			
	Inspect/ Clean			
	Inspect/ Clean			
Vegetated Areas	Inspect			
Inspect weekly and after major storm event.	Inspect			
Construction Entrance	Inspect/Clean			
Inspect weekly and after major storm event.	Inspect/Clean			
Soil Stock Pile Area	Inspect			
Inspect weekly and after major storm event.	Inspect			

Standard 9: Operations and Maintenance Plan

The information provided herein is intended to provide the base information for operation and maintenance of the site in perpetuity subject to updates and revisions as required at a future date. As such all future property owners must be notified in writing of this plan and be provided with a copy of this plan, a complete set of the design drawings and/or a completed as-built plan showing all the drainage features as they were constructed, which are considered part of this document. Please see the attached Operations and Maintenance Log (Appendix IX).

Stormwater management system owner:Kevin Whelan (978-500-9729)The party responsible for operation and maintenance:Kevin Whelan (978-500-9729)

Preliminary Stormwater Operation and Maintenance Budget

Quarterly Inspection and Maintenance x \$2,500 per visit = \$10,000 annually

Illicit Discharge - Practices to Minimize Storm Water Contamination

- All waste materials will be collected and stored in a securely lidded metal dumpster.
- All trash and debris from the site will be deposited in the dumpster. The dumpster will be emptied on a regular schedule prior to being over full.
- All personnel will be instructed regarding the correct procedure for waste disposal.
- Good housekeeping and spill control practices will be followed to minimize storm water contamination from petroleum products, paints, and cleaning products.
- All site vehicles will be monitored for leaks and receive regular preventive maintenance to reduce the chance of leakage.
- Spill kits will be provided with any activity that could provide contamination.
- All paint containers and curing compounds will be tightly sealed and stored when not required for use. Excess paint will not be discharged to the storm sewers, but will be properly disposed according to the manufacturer's instructions.
- All spills will be cleaned up immediately upon discovery. Spills large enough to reach the storm sewers will be reported to the Massachusetts Department of Environmental Protection Northeast Regional Office at 1-888-304-1133.

Infiltration Fields

The infiltration fields shall be inspected after every major storm for the first few months to ensure it is stabilized and functioning properly. If necessary, corrective action shall be taken until the system functions properly. Inspectors should note how long water remains standing in the inspection port after a storm; standing water within the basin 48 to 72 hours after a storm indicates that the infiltration capacity may have been overestimated. If the ponding is due to clogging, immediately address the reasons for the clogging. Thereafter, inspect the infiltration BMP at least twice per year.

Infiltration Trenches

The infiltration trenches shall be inspected in early May and the second half of October. Any accumulated silt, trash, or debris shall be removed from the infiltration trenches. Crushed stone shall be replenished as needed. If silt reaches halfway up the crushed stone, it shall be removed, and the stone replaced or replenished as needed.

Roof Drain Leaders

Routine roof inspections shall be performed two times per year. The roof shall be kept clean and free of debris, and the roof drainage systems shall be kept clear. Gutters and downspouts shall be cleaned at least twice per year, or more frequently as necessary.

Vegetated Areas Maintenance

Although not a structural component of the drainage system, the maintenance of vegetated areas may affect the functioning of stormwater management practices. This includes the health/density of vegetative cover and

activities such as the application and disposal of lawn and garden care products, disposal of leaves and yard trimmings.

Initial Post-Construction Inspection

During the initial period of vegetation establishment pruning and weeding are required twice in first year by contractor or owner. Any dead vegetation/plantings found after the first year will be replaced. Proper mulching is mandatory and regular watering may be required initially to ensure proper establishment of new vegetation.

Long-Term Maintenance

The planted areas shall be inspected on a semi-annual basis and any litter removed. Weeds and invasive plant species shall be removed by hand. Maintain planted areas adjacent to pavement to prevent soil washout. Immediately clean any soil deposits on pavement. Leaf litter and other detritus shall be removed twice per year. If needed to maintain aesthetic appearance, perennial plantings may be trimmed at the end of the growing season.

Trees and shrubs shall be inspected twice per year to evaluate health and attended to as necessary. Seeded ground cover or grass areas shall not receive mulching. Re-seed bare areas; install appropriate erosion control measures when native soil is exposed or erosion channels are forming. Plant alternative mixtures of grass species in the event of unsuccessful establishment. The grass vegetation should not be cut to a height less than four inches.

Pesticide/Herbicide Usage

No pesticides are to be used unless a single spot treatment is required for a specific control application.

57 Perkins Row – Post Construction Maintenance

Operations and Maintenance Log Inspections for Year:

Structural Best Management Practice (Frequency)	Action	Date Completed	Completed By	Comments
Infiltration Fields – Inspect twice per year. Clean as	Inspect			
required	Inspect			
Infiltration Trenches – Inspect twice per year. Clean as required	Inspect			
	Inspect			
Roof Drain Leaders – Inspect/clean twice per	Inspect/Clean			
year.	Inspect/Clean			
Vegetated Areas Maintenance – Inspect twice per year. Maintain as required.	Inspect			
	Inspect			

Standard 10: Prohibition of Illicit Discharges

No illicit discharges currently exist and no future illicit discharges will be allowed including wastewater discharges and discharges of stormwater contaminated by contact with process wastes, raw materials, toxic pollutants, hazardous substances, soil, or grease.

Appendix I Locus Map

Appendix II Topsfield, MA Map of Areas of Severe Limitations

Appendix III NRCS Soils Map

USDA Natural Resources

Conservation Service

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group-Essex County, Massachusetts, Northern Part

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Water		3.7	5.8%
6A	Scarboro mucky fine sandy loam, 0 to 3 percent slopes	A/D	2.5	4.0%
16A	Scantic silt loam, 0 to 3 percent slopes	C/D	2.9	4.6%
32A	Wareham loamy sand, 0 to 3 percent slopes	A/D	0.3	0.5%
72A	Whitman fine sandy loam, 0 to 3 percent slopes	D	0.0	0.0%
73A	Whitman fine sandy loam, 0 to 3 percent slopes, extremely stony	D	1.5	2.3%
254A	Merrimac fine sandy loam, 0 to 3 percent slopes	A	1.3	2.0%
256A	Deerfield loamy fine sand, 0 to 3 percent slopes	A	1.9	2.9%
315B	Scituate fine sandy loam, 3 to 8 percent slopes	C	1.2	1.8%
405B	Charlton fine sandy loam, 3 to 8 percent slopes	В	16.3	25.5%
405C	Charlton fine sandy loam, 8 to 15 percent slopes	В	2.5	3.9%
406D	06D Charlton fine sandy loam, 15 to 25 percent slopes, very stony		4.4	6.8%
420B	Canton fine sandy loam, 3 to 8 percent slopes	В	9.8	15.2%
421C	Canton fine sandy loam, 8 to 15 percent slopes, very stony	В	1.0	1.5%
713A	Limerick and Rumney soils, 0 to 3 percent slopes, frequently flooded	B/D	9.0	14.1%
718A	Saco variant silt loam, frequently ponded, 0 to 1 percent slopes, frequently flooded	B/D	5.9	9.2%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Totals for Area of Interes	st		64.0	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Appendix IV Soil Testing Logs

NOTES:

1.) ELEVATIONS BASED ON NAVD88.

2.) TOPOGRAPHIC FEATURES AND LOCATIONS ARE THE RESULT OF AN ACTUAL FIELD SURVEY PERFORMED BY THE MORIN-CAMERON GROUP SEPTEMBER OF 2014.

3.) WETLAND RESOURCE AREAS WERE FLAGGED BY DEROSA ENVIRONMENTAL CONSULTING AND LOCATED BY THE MORIN-CAMERON GROUP. 4.) MEAN ANNUAL HIGH WATER DETERMINED IN FIELD BY OBSERVATIONS OF

STAINING ON TREES AS DETERMINED BY DEROSA ENVIRONMENTAL CONSULTING. 5.) IPSWICH RIVER LOCATION TAKEN FROM THE TOWN OF TOPSFIELD GIS MAP. 6.) PROPERTY LINE INFORMATION COMPILED FROM VARIOUS PLANS AND DEEDS AND SHOULD BE CONSIDERED APPROXIMATE ONLY. 7.) WETLAND RESOURCE AREAS WITHIN THE SURVEYED PREMISES INCLUDE THE FÓLLOWING:

-LIMIT OF MEAN HIGH WATER -APPROXIMATE BANK FULL RIVER CHANNEL -WETLAND FLAG NUMBERS A3 TO A20, B5 TO B13 AND C1 TO C10

*ALL OTHER WETLAND RESOURCE AREAS DEPICTED OUTSIDE THE PREMISES AND ILLUSTRATED HERON ARE TO DETERMINE THE EXTENT OF JURISDICTIONAL BUFFER ZONE IMPACTS ON THE SUBJECT PREMISE ONLY. 8.) THIS PLAN HAS BEEN PREPARED FOR OUR CLIENTS USE ONLY FOR THE SPECIFIC PURPOSE OF A PRELIMINARY SUBDIVISION PLAN. IT IS NOT TO BE USED OR RELIED UPON AS A CONSTRUCTION DOCUMENT OR ANY OTHER USE BY OTHERS WITHOUT THE WRITTEN CONSENT OF THE MORIN-CAMERON GROUP, INC.

PLAN & DEED REFERENCES: 1.) LAND COURT CERTIFICATE NO. 87747. 2.) LAND COURT PLAN 21476-B.

3.) DOCUMENT NO. 107106

N/F ESTATE OF RITA CHITRO 43 PERKINS ROW MAP 58 LOT 28 DOC. 359101

N/F PAUL L. HARDING 31 PERKINS ROW MAP 58 LOT 29 30990/566 N/F KEITH H. SHERWOOD 291 PERKINS ROW MAP 58 LOT 30

27984/602

7.J.O.C.

LOT B 356,838± S.F. 8:2 ± ACRES

-100' BUFFER TO BYW

6199/368

(AS SHOWN ON LAND COURT PLAN NO. 21476

≁5g

LIMIT OF BORDERING VEGETATED WETLAND (BVW)

-200' RIVERFRONT AREA (3.3± ACRES WITHIN THE PARCEL BOUNDARY) (TOPSFIELD BY-LAW)

ZONING TABLE NOTE:

1. EACH LOT MUST FIT A 100' DIAMETER CIRCLE WHERE ONLY 10% OF THE CIRCLE IS WITHIN THE BUFFER ZONE TO A WETLAND RESOURCE AREA.

		INTOTITIC-CALIFORNIA			CIVIL ENGINEERS I ENVIRONMENTAL CONSULTANTS		P: 978-887-8586, F: 978-887-3480, W: WWW.MORINCAMERON.COM
	ATH OF MAGO	SCOTT P T	CAMERON B	0 Na 47601 6	CO COLSTER SC	A	it l
SURVEY BY: DY/RR			CHECKED BY: SPC	APPROVED BY: SPC	SCALE. 1"-40'		DATE: MARCH 10, 2015
	DATE	1				-	
REVISIONS	DESCRIPTION						
PROPOSED DEFINITIVE SUBDIVISION		PLAN OF LAND	I OCATED AT	57 PFRKINS ROW	ACCECCOD'C MAD ER LOT 25)		
	FXISTING SITE		CUULIUUUU		RAMING NO.		0 UT 4

PROJ. #3274

© THE MORIN-CAMERON GROUP, INC. 2015

PROJ. #3274

Appendix V Existing and Proposed Drainage Figures

Appendix VI Hydrocad Output

Summary for Subcatchment EX1: Existing

Runoff = 0.29 cfs @ 12.10 hrs, Volume= 0.027 af, Depth> 0.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.27"

Area (st	f) CN	Description					
24,30	0 61	>75% Gras	s cover, Go	iood, HSG B			
1,29	1 98	Roofs, HSG	Roofs, HSG B				
39	7 98	Paved park	Paved parking, HSG B				
25,98	8 63	Weighted A	Neighted Average				
24,30	0	93.50% Per	93.50% Pervious Area				
1,68	8	6.50% Impe	6.50% Impervious Area				
Tc Leng	th Slop	be Velocity	Capacity	Description			
(min) (fee	et) (ft/	ft) (ft/sec)	(cfs)				
5.0				Direct Entry,			

Summary for Subcatchment EX2: Existing

Runoff = 0.33 cfs @ 12.10 hrs, Volume= 0.027 af, Depth> 0.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.27"

A	rea (sf)	CN	Description				
	16,502	61	>75% Gras	s cover, Go	lood, HSG B		
	1,079	98	Roofs, HSC	βB			
	2,112	98	Paved park	ing, HSG E	В		
	19,693	67	Weighted Average				
	16,502		83.80% Pervious Area				
	3,191		16.20% Impervious Area				
_							
Tc	Length	Slope	e Velocity	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)			
5.0					Direct Entry,		

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment EX1: Existing

Runoff Area=25,988 sf 6.50% Impervious Runoff Depth>1.62" Tc=5.0 min CN=63 Runoff=1.07 cfs 0.080 af

Subcatchment EX2: Existing

Runoff Area=19,693 sf 16.20% Impervious Runoff Depth>1.92" Tc=5.0 min CN=67 Runoff=0.99 cfs 0.072 af

27296 HydroCAD Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 00711 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 100-year Rainfall=8.17" Printed 3/18/2024 ns LLC Page 2

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment EX1: Existing

Runoff Area=25,988 sf 6.50% Impervious Runoff Depth>3.80" Tc=5.0 min CN=63 Runoff=2.65 cfs 0.189 af

Subcatchment EX2: Existing

Runoff Area=19,693 sf 16.20% Impervious Runoff Depth>4.26" Tc=5.0 min CN=67 Runoff=2.26 cfs 0.160 af

Summary for Subcatchment PR1A: Landscaped

Runoff = 0.21 cfs @ 12.11 hrs, Volume= 0.021 af, Depth> 0.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.27"

Area (s	sf) CN	Description				
20,9	54 61	>75% Gras	s cover, Go	iood, HSG B		
:	39 98	Unconnecte	ed pavemer	ent, HSG B		
4	59 98	Roofs, HSC	Β			
21,4	52 62	2 Weighted Average				
20,9	54	97.68% Pervious Area				
49	98	2.32% Impervious Area				
:	39	7.83% Unconnected				
Tc Len	gth Slo	pe Velocity	Capacity	Description		
(min) (fe	et) (ft/	<u>/ft) (ft/sec)</u>	(cfs)			
5.0				Direct Entry,		

Summary for Subcatchment PR1B: Rear Roof

Runoff = 0.07 cfs @ 12.07 hrs, Volume= 0.005 af, Depth> 3.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.27"

Area (sf)	CN	Description				
946	98	Roofs, HSC	βB			
946	i	100.00% Impervious Area				
Tc Lengt (min) (feet	h Slop t) (ft/i	e Velocity ft) (ft/sec)	Capacity (cfs)	Description		
5.0				Direct Entry,		

Summary for Subcatchment PR2A: Landscaped

Runoff = 0.13 cfs @ 12.11 hrs, Volume= 0.014 af, Depth> 0.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.27"

Area (sf)	CN	Adj	Description
15,163	61		>75% Grass cover, Good, HSG B
256	98		Unconnected pavement, HSG B
15,419	62	61	Weighted Average, UI Adjusted
15,163			98.34% Pervious Area
256			1.66% Impervious Area
256			100.00% Unconnected

27296	7296 HydroCAD				Type III 24-hr 2-year Rainfall=3.27"				
Prepare	d by {ent	er your o	company	name here	e}	Pi	rinted 3/21/2024		
<u>HydroCA</u>	D® 10.00-2	26 s/n 00	711 © 202	0 HydroCAE) Software So	lutions LLC	Page 3		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptior	1			
5.0					Direct Ent	ry,			
		S	Summary	for Sub	catchment	t PR2B: Driveway			
Runoff	=	0.33 cfs	s@ 12.0 [°]	7 hrs, Volu	ıme=	0.023 af, Depth> 2.14"			
Runoff b Type III :	y SCS TR 24-hr 2-ye	-20 meth ear Rainf	nod, UH=S fall=3.27"	CS, Weigh	ited-CN, Tim	e Span= 0.00-24.00 hrs, dt=	0.05 hrs		
A	rea (sf)	CN D	escription						
	4,315 1,385	98 P 61 >	aved park 75% Gras	ing, HSG E s cover, Go	B bod, HSG B				
	5,700	89 V	Veighted A	verage					
	4,315	7	4.30% Per 5.70% Imp	vious Area pervious Ar	ea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptior	1			
5.0					Direct Ent	ry,			
		Su	mmary f	or Subca	atchment F	PR2C: Garage Roof			
Runoff	=	0.09 cfs	s @ 12.0 ⁻	7 hrs, Volu	ıme=	0.007 af, Depth> 3.04"			
Runoff b Type III 2	y SCS TR 24-hr 2-ye	-20 meth ear Rainf	nod, UH=S fall=3.27"	CS, Weigh	ited-CN, Tim	e Span= 0.00-24.00 hrs, dt=	0.05 hrs		
A	rea (sf)	CN D	escription						
	1,171	98 R	Roofs, HSG	в					
	1,171	1	00.00% Im	pervious A	rea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptior	1			
5.0	х <i>г</i>		, <i>i</i>		Direct Ent	ry,			
		S	ummary	for Subc	atchment	PR2D: Front Roof			
Runoff	=	0.07 cfs	s @ 12.0 ⁻	7 hrs, Volu	ıme=	0.006 af, Depth> 3.04"			
Runoff b Type III :	y SCS TR 24-hr 2-ye	-20 meth ear Rainf	nod, UH=S ^f all=3.27"	CS, Weigh	ited-CN, Tim	e Span= 0.00-24.00 hrs, dt=	0.05 hrs		

Area (sf)	CN	Description
993	98	Roofs, HSG B
993		100.00% Impervious Area

Type III 24-hr 2-year Rainfall=3.27" Printed 3/21/2024 s LLC Page 4

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 00711 © 2020 HydroCAD Software Solutions LLC

Tc L	_ength	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
5.0	<i>i</i>		////	X/	Direct Entry,						
Summary for Reach DP1:											
Inflow Area	a =	0.514 a	c, 6.459	% Imperviou	us, Inflow Depth > 0.49" for 2-year event						
Inflow	=	0.21 cfs	@ 12.1	1 hrs, Volu	me= 0.021 af						
Outflow	=	0.21 cfs	@ 12.1	1 hrs, Volu	me= 0.021 af, Atten= 0%, Lag= 0.0 min						

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Reach DP2:

Inflow Area	a =	0.535 ac, 2	28.93% Impe	ervious,	Inflow De	pth >	0.31	" for 2-y	ear event
Inflow	=	0.13 cfs @	12.11 hrs,	Volume	=	0.014 a	af	-	
Outflow	=	0.13 cfs @	12.11 hrs,	Volume	=	0.014 a	af, A	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Pond IF1: Infiltration Field 1

Inflow Area	ı =	0.027 ac,10	0.00% Impervio	us, Inflow De	pth > 3	.04" for	2-year event	
Inflow	=	0.09 cfs @	12.07 hrs, Volu	me=	0.007 af		-	
Outflow	=	0.01 cfs @	11.35 hrs, Volu	me=	0.007 af	, Atten=	91%, Lag= 0.0	min
Discarded	=	0.01 cfs @	11.35 hrs, Volu	me=	0.007 af			
Primary	=	0.00 cfs @	0.00 hrs, Volu	me=	0.000 af			

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 4 Peak Elev= 67.24' @ 12.94 hrs Surf.Area= 320 sf Storage= 106 cf

Plug-Flow detention time= 100.7 min calculated for 0.007 af (100% of inflow) Center-of-Mass det. time= 100.0 min (854.7 - 754.7)

Volume	Inve	ert Avail.Sto	rage Storag	Storage Description						
#1	66.5	0' 2	20 cf Subsu 489 cf	Urface Trench ST Overall x 45.0%	1 (Prismatic) Listed below (Recalc) Voids					
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)						
66.5 67.5 68.5	50 50 55	320 320 1	0 320 169	0 320 489						
Device	Routing	Invert	Outlet Devic	ces						
#1 #2	Discarde Primary	d 66.50' 68.50'	1.020 in/hr 6.0" x 6.0" Limited to w	.020 in/hr Exfiltration over Surface area .0" x 6.0" Horiz. Orifice/Grate C= 0.600 .imited to weir flow at low heads						

Discarded OutFlow Max=0.01 cfs @ 11.35 hrs HW=66.52' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=66.50' (Free Discharge) **2=Orifice/Grate** (Controls 0.00 cfs)

Summary for Pond IF2: Infiltration Field 2

Inflow Area	=	0.023 ac,10	0.00% Impervious,	Inflow Depth >	3.04" for	2-year event
Inflow	=	0.07 cfs @	12.07 hrs, Volume	.006	af	
Outflow	=	0.01 cfs @	11.50 hrs, Volume	.006	af, Atten=	90%, Lag= 0.0 min
Discarded	=	0.01 cfs @	11.50 hrs, Volume	e= 0.006	af	-
Primary	=	0.00 cfs @	0.00 hrs, Volume)= 0.000	af	

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 66.94' @ 12.84 hrs Surf.Area= 300 sf Storage= 86 cf

Plug-Flow detention time= 85.1 min calculated for 0.006 af (100% of inflow) Center-of-Mass det. time= 84.2 min (838.9 - 754.7)

Volume	Invert	Avail.Stor	age Storage I	Description					
#1	66.30'	20	6 cf Subsurfa 458 cf Ov	erall x 45.0%	1 (Prismatic) Listed below (Recalc) Voids				
Elevatio (fee	on Su et)	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)					
66.3 67.3 68.3	30 30 35	300 300 1	0 300 158	0 300 458					
Device	Routing	Invert	Outlet Devices						
#1 #2	Discarded Primary	66.30' 68.30'	1.020 in/hr Ext 6.0" x 6.0" Hot Limited to weir	filtration over riz. Orifice/Gra flow at low hea	Surface area ate C= 0.600 ads				
Discard	Discarded OutFlow Max=0.01 cfs @ 11.50 hrs HW=66.32' (Free Discharge)								

1=Exfiltration (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=66.30' (Free Discharge)

Summary for Pond IF3: Infiltration Field 3

Inflow Area	=	0.022 ac,10	0.00% Impervious	, Inflow Depth >	3.04" fo	or 2-year event
Inflow	=	0.07 cfs @	12.07 hrs, Volum	ie= 0.005	af	
Outflow	=	0.01 cfs @	11.60 hrs, Volum	ie= 0.005	af, Atten	= 89%, Lag= 0.0 min
Discarded	=	0.01 cfs @	11.60 hrs, Volum	ie= 0.005	af	-
Primary	=	0.00 cfs @	0.00 hrs, Volum	ie= 0.000	af	

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 2

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 00711 © 2020 HydroCAD Software Solutions LLC

Peak Elev= 63.95' @ 12.72 hrs Surf.Area= 320 sf Storage= 79 cf

Plug-Flow detention time= 70.2 min calculated for 0.005 af (100% of inflow) Center-of-Mass det. time= 69.4 min (824.1 - 754.7)

Volume	Invei	rt Avail.Sto	rage Storage	Description	
#1	63.40)' 21	20 cf Subsur 489 cf 0	face Trench ST Overall x 45.0%	I (Prismatic) Listed below (Recalc) √oids
Elevatio (fee	on S et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
63.4 64.4 65.4	40 40 45	320 320 1	0 320 169	0 320 489	
Device	Routing	Invert	Outlet Device	S	
#1 #2	Discarded Primary	63.40' 65.40'	1.020 in/hr E 6.0" x 6.0" H Limited to we	xfiltration over oriz. Orifice/Gra ir flow at low hea	Surface area te C= 0.600 ds

Discarded OutFlow Max=0.01 cfs @ 11.60 hrs HW=63.42' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=63.40' (Free Discharge)

Summary for Pond IT: Infiltration Trench

Inflow Area	=	0.131 ac, 7	5.70% Impe	ervious,	Inflow Depth >	2.14'	for 2	2-yea	r event	
Inflow	=	0.33 cfs @	12.07 hrs,	Volume=	= 0.023	af		-		
Outflow	=	0.03 cfs @	11.55 hrs,	Volume	= 0.023	af, A	tten= 9	2%, l	_ag= 0.0 r	min
Discarded	=	0.03 cfs @	11.55 hrs,	Volume=	= 0.023	af			•	
Primary	=	0.00 cfs @	0.00 hrs,	Volume=	= 0.000	af				

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 64.87' @ 13.11 hrs Surf.Area= 1,160 sf Storage= 405 cf

Plug-Flow detention time= 125.3 min calculated for 0.023 af (100% of inflow) Center-of-Mass det. time= 124.5 min (933.4 - 808.9)

Volume	Invert	Avail.	Storage	Storag	e Description	
#1	64.00'		951 cf	Infiltra 2,378 d	tion Trench (Prise of Overall x 40.0%	matic) Listed below (Recalc) Voids
Elevation (feet)	Surf./ (s	Area sq-ft)	Inc (cubio	.Store c-feet)	Cum.Store (cubic-feet)	
64.00 66.05	1	,160 ,160		0 2,378	0 2,378	

Prepared by {enter	er your com	pany name here	}
HydroCAD® 10.00-2	6 s/n 00711	© 2020 HydroCAD	Software Solutions LL

Device	Routing	Invert	Outlet Devices
#1	Discarded	64.00'	1.020 in/hr Exfiltration over Surface area
#2	Primary	66.00'	20.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Discarded OutFlow Max=0.03 cfs @ 11.55 hrs HW=64.02' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=64.00' (Free Discharge) **2=Sharp-Crested Rectangular Weir** (Controls 0.00 cfs)

27296 HydroCAD Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 00711 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPR1A: Landscaped	Runoff Area=21,452 sf 2.32% Impervious Runoff Depth>1.54" Tc=5.0 min CN=62 Runoff=0.84 cfs 0.063 af
Subcatchment PR1B: Rear Roof	Runoff Area=946 sf 100.00% Impervious Runoff Depth>4.93" Tc=5.0 min CN=98 Runoff=0.11 cfs 0.009 af
Subcatchment PR2A: Landscaped	Runoff Area=15,419 sf 1.66% Impervious Runoff Depth>1.47" Tc=5.0 min UI Adjusted CN=61 Runoff=0.57 cfs 0.043 af
Subcatchment PR2B: Driveway	Runoff Area=5,700 sf 75.70% Impervious Runoff Depth>3.93" Tc=5.0 min CN=89 Runoff=0.59 cfs 0.043 af
Subcatchment PR2C: Garage Roof	Runoff Area=1,171 sf 100.00% Impervious Runoff Depth>4.93" Tc=5.0 min CN=98 Runoff=0.14 cfs 0.011 af
Subcatchment PR2D: Front Roof	Runoff Area=993 sf 100.00% Impervious Runoff Depth>4.93" Tc=5.0 min CN=98 Runoff=0.12 cfs 0.009 af
Reach DP1:	Inflow=0.84 cfs 0.063 af Outflow=0.84 cfs 0.063 af
Reach DP2:	Inflow=0.57 cfs 0.044 af Outflow=0.57 cfs 0.044 af

Summary for Pond IF1: Infiltration Field 1

Inflow Area	=	0.027 ac,10	0.00% Imp	ervious, Inflow De	epth > 4.9	93" for 10-y	ear event
Inflow	=	0.14 cfs @	12.07 hrs,	Volume=	0.011 af		
Outflow	=	0.01 cfs @	13.36 hrs,	Volume=	0.006 af,	Atten= 90%,	Lag= 77.7 min
Discarded	=	0.01 cfs @	10.50 hrs,	Volume=	0.006 af		-
Primary	=	0.01 cfs @	13.37 hrs,	Volume=	0.000 af		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 4 Peak Elev= 68.51' @ 13.35 hrs Surf.Area= 12 sf Storage= 220 cf

Plug-Flow detention time= 137.9 min calculated for 0.006 af (55% of inflow) Center-of-Mass det. time= 18.9 min (765.1 - 746.2)

Volume	Invert	Avail.Stor	age Storage	Description	
#1	66.50'	22	20 cf Subsur 489 cf C	face Trench ST Overall x 45.0%	1 (Prismatic) Listed below (Recalc) Voids
Elevatio (fee	on Su t)	rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
66.5	50	320	0	0	
67.5	50	320	320	320	
68.5	55	1	169	489	
Device	Routing	Invert	Outlet Device	s	
#1 #2	Discarded Primary	66.50' 68.50'	1.020 in/hr E 6.0" x 6.0" He Limited to we	xfiltration over oriz. Orifice/Gra ir flow at low hea	Surface area ate C= 0.600 ads

Discarded OutFlow Max=0.01 cfs @ 10.50 hrs HW=66.52' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.01 cfs @ 13.37 hrs HW=68.51' (Free Discharge) ←2=Orifice/Grate (Weir Controls 0.01 cfs @ 0.39 fps)

Summary for Pond IF2: Infiltration Field 2

Inflow Area	ı =	0.023 ac,10	0.00% Imperv	vious, Inflow D	Depth > 4.9	93" for	10-year event	
Inflow	=	0.12 cfs @	12.07 hrs, V	/olume=	0.009 af			
Outflow	=	0.01 cfs @	10.70 hrs, V	/olume=	0.008 af,	Atten= 9	94%, Lag= 0.0 mii	n
Discarded	=	0.01 cfs @	10.70 hrs, V	/olume=	0.008 af			
Primary	=	0.00 cfs @	0.00 hrs, V	/olume=	0.000 af			

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 67.73' @ 15.26 hrs Surf.Area= 178 sf Storage= 181 cf

Plug-Flow detention time= 246.8 min calculated for 0.008 af (89% of inflow) Center-of-Mass det. time= 193.4 min (939.6 - 746.2)

 Type III 24-hr
 10-year Rainfall=5.17"

 Printed
 3/21/2024

 s LLC
 Page 2

Prepared by {enter	your com	pany name here	}
HydroCAD® 10.00-26	s/n 00711	© 2020 HydroCAD	Software Solutions LL

Volume	Invert	Avail.Sto	rage Storage	Description					
#1	66.30'	20	06 cf Subsurf 458 cf O	ace Trench ST1 verall x 45.0% \	I (Prismatic)Listed below (Recalc) ∕oids				
Elevatio (fee	on Su et)	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)					
66.3	30	300	0	0					
67.3	80	300	300	300					
68.3	35	1	158	458					
Device	Routing	Invert	Outlet Devices	5					
#1	Discarded	66.30'	1.020 in/hr Ex	filtration over \$	Surface area				
#2	Primary	68.30'	6.0" x 6.0" Ho Limited to weir	6.0" x 6.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads					
Discardo 1=Ext	Discarded OutFlow Max=0.01 cfs @ 10.70 hrs HW=66.32' (Free Discharge)								

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=66.30' (Free Discharge)

Summary for Pond IF3: Infiltration Field 3

Inflow Area	ı =	0.022 ac,10	0.00% Impervious,	Inflow Depth >	4.93" for	⁻ 10-year event
Inflow	=	0.11 cfs @	12.07 hrs, Volume	= 0.009	af	
Outflow	=	0.01 cfs @	11.00 hrs, Volume	= 0.009	af, Atten=	93%, Lag= 0.0 min
Discarded	=	0.01 cfs @	11.00 hrs, Volume	= 0.009	af	-
Primary	=	0.00 cfs @	0.00 hrs, Volume	= 0.000	af	

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 64.46' @ 13.49 hrs Surf.Area= 302 sf Storage= 152 cf

Plug-Flow detention time= 154.9 min calculated for 0.009 af (100% of inflow) Center-of-Mass det. time= 154.2 min (900.5 - 746.2)

Volume	Inve	ert Avail.Sto	orage S	torage D	escription				
#1	63.4	10' 2	220 cf S 48	ubsurfac 89 cf Ove	ce Trench ST1 (erall x 45.0% Vo	Prismatic)Listed below (Recalc) bids			
Elevatio	on et)	Surf.Area (sq-ft)	Inc.St (cubic-fe	ore eet)	Cum.Store (cubic-feet)				
63.4	40	320		0	0				
64.4	40	320		320	320				
65.4	45	1		169	489				
Device	Routing	Invert	Outlet I	Devices					
#1	Discarde	d 63.40'	1.020 i	n/hr Exfi	Itration over Su	Irface area			
#2	Primary	65.40'	6.0" x (Limited	.0" x 6.0" Horiz. Orifice/Grate C= 0.600 imited to weir flow at low heads					

Discarded OutFlow Max=0.01 cfs @ 11.00 hrs HW=63.42' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=63.40' (Free Discharge) ←2=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond IT: Infiltration Trench

Inflow Area	ı =	0.131 ac, 7	5.70% Impervi	ous, Inflow [Depth > 3	6.93" for	10-year eve	ent
Inflow	=	0.59 cfs @	12.07 hrs, Vo	lume=	0.043 af	F		
Outflow	=	0.03 cfs @	10.70 hrs, Vo	lume=	0.034 af	f, Atten=	95%, Lag= (0.0 min
Discarded	=	0.03 cfs @	10.70 hrs, Vo	lume=	0.034 af	-	-	
Primary	=	0.00 cfs @	0.00 hrs, Vo	lume=	0.000 af	F		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 65.99' @ 14.65 hrs Surf.Area= 1,160 sf Storage= 924 cf

Plug-Flow detention time= 267.6 min calculated for 0.034 af (79% of inflow) Center-of-Mass det. time= 192.3 min (984.2 - 791.9)

Volume	Inver	t Avail.Sto	rage Storag	e Description	
#1	64.00	95	51 cf Infiltra 2,378 d	tion Trench (Pris cf Overall x 40.09	smatic) Listed below (Recalc) % Voids
Elevatio (fee	on S et)	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
64.0	00	1,160	0	0	
66.0	05	1,160	2,378	2,378	
Device	Routing	Invert	Outlet Devic	es	
#1 #2	Discarded Primary	64.00' 66.00'	1.020 in/hr 20.0' long S	Exfiltration over harp-Crested Re	Surface area ectangular Weir 2 End Contraction(s)

Discarded OutFlow Max=0.03 cfs @ 10.70 hrs HW=64.02' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=64.00' (Free Discharge) 2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

27296 HydroCADType III 24-hr100-year Rainfall=8.17"Prepared by {enter your company name here}Printed 3/21/2024HydroCAD® 10.00-26 s/n 00711 © 2020 HydroCAD Software Solutions LLCPage 2

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPR1A: Landscaped	Runoff Area=21,452 sf 2.32% Impervious Runoff Depth>3.69" Tc=5.0 min CN=62 Runoff=2.12 cfs 0.151 af
Subcatchment PR1B: Rear Roof	Runoff Area=946 sf 100.00% Impervious Runoff Depth>7.93" Tc=5.0 min CN=98 Runoff=0.18 cfs 0.014 af
Subcatchment PR2A: Landscaped	Runoff Area=15,419 sf 1.66% Impervious Runoff Depth>3.57" Tc=5.0 min UI Adjusted CN=61 Runoff=1.47 cfs 0.105 af
Subcatchment PR2B: Driveway	Runoff Area=5,700 sf 75.70% Impervious Runoff Depth>6.85" Tc=5.0 min CN=89 Runoff=0.99 cfs 0.075 af
Subcatchment PR2C: Garage Roof	Runoff Area=1,171 sf 100.00% Impervious Runoff Depth>7.93" Tc=5.0 min CN=98 Runoff=0.22 cfs 0.018 af
Subcatchment PR2D: Front Roof	Runoff Area=993 sf 100.00% Impervious Runoff Depth>7.93" Tc=5.0 min CN=98 Runoff=0.18 cfs 0.015 af
Reach DP1:	Inflow=2.12 cfs 0.153 af Outflow=2.12 cfs 0.153 af
Reach DP2:	Inflow=2.12 cfs 0.134 af Outflow=2.12 cfs 0.134 af

Summary for Pond IF1: Infiltration Field 1

Inflow Area	ı =	0.027 ac,10	0.00% Imp	ervious, Inflow I	Depth > 7	'.93" for	100-ye	ear event	
Inflow	=	0.22 cfs @	12.07 hrs,	Volume=	0.018 af	f			
Outflow	=	0.03 cfs @	12.47 hrs,	Volume=	0.010 af	f, Atten=	88%, L	.ag= 24.1	min
Discarded	=	0.01 cfs @	9.00 hrs,	Volume=	0.007 af	f		-	
Primary	=	0.03 cfs @	12.47 hrs,	Volume=	0.004 af	f			

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 4 Peak Elev= 68.52' @ 12.47 hrs Surf.Area= 9 sf Storage= 220 cf

Plug-Flow detention time= 141.2 min calculated for 0.010 af (57% of inflow) Center-of-Mass det. time= 23.5 min (763.2 - 739.7)

Volume	Inver	t Avail.Stor	rage Stora	ge Description	
#1	66.50)' 22	20 cf Subs 489 c	urface Trench ST f Overall x 45.0%	1 (Prismatic) Listed below (Recalc) Voids
Elevatio (fee	on S et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
66.5	50	320	0	0	
67.5	50	320	320	320	
68.5	55	1	169	489	
Device	Routing	Invert	Outlet Devi	ces	
#1 #2	Discarded Primary	66.50' 68.50'	1.020 in/hr 6.0" x 6.0" Limited to v	Exfiltration over Horiz. Orifice/Graveir flow at low heat	Surface area ate C= 0.600 ads

Discarded OutFlow Max=0.01 cfs @ 9.00 hrs HW=66.52' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.02 cfs @ 12.47 hrs HW=68.52' (Free Discharge) ←2=Orifice/Grate (Weir Controls 0.02 cfs @ 0.51 fps)

Summary for Pond IF2: Infiltration Field 2

Inflow Area	=	0.023 ac,10	0.00% Imp	ervious, Inflow	Depth >	7.93"	for 100-	year event
Inflow	=	0.18 cfs @	12.07 hrs,	Volume=	0.015	af		
Outflow	=	0.01 cfs @	12.94 hrs,	Volume=	0.008	af, Atte	n= 93%,	Lag= 51.9 min
Discarded	=	0.01 cfs @	9.30 hrs,	Volume=	0.006	af		-
Primary	=	0.01 cfs @	12.94 hrs,	Volume=	0.002	af		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 68.31' @ 12.94 hrs Surf.Area= 11 sf Storage= 206 cf

Plug-Flow detention time= 149.6 min calculated for 0.008 af (53% of inflow) Center-of-Mass det. time= 21.9 min (761.6 - 739.7)

Type III 24-hr 100-year Rainfall=8.17" Printed 3/21/2024 ns LLC Page 5

Prepared by {enter	your com	pany name here	}
HydroCAD® 10.00-26	s/n 00711	© 2020 HydroCAD	Software Solutions LL

Volume	Invert	Avail.Stor	age Storage I	Description				
#1	66.30'	20	6 cf Subsurfa 458 cf Ov	ace Trench ST1 /erall x 45.0% \	l (Prismatic) Listed below (Recalc) /oids			
Elevatio	on Su	rf.Area	Inc.Store	Cum.Store				
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)				
66.3	30	300	0	0				
67.3	30	300	300	300				
68.3	35	1	158	458				
Device	Routing	Invert	Outlet Devices					
#1	Discarded	66.30'	1.020 in/hr Ex	filtration over S	Surface area			
#2	Primary	68.30'	6.0" x 6.0" Ho Limited to weir	riz. Orifice/Grat	te C= 0.600 ds			
Discarded OutFlow Max=0.01 cfs @ 9.30 hrs HW=66.32' (Free Discharge)								

Primary OutFlow Max=0.01 cfs @ 12.94 hrs HW=68.31' (Free Discharge) **2=Orifice/Grate** (Weir Controls 0.01 cfs @ 0.39 fps)

Summary for Pond IF3: Infiltration Field 3

Inflow Area	=	0.022 ac,10	0.00% Impe	ervious, Inflow D	Depth > 7.9	3" for 100-	year event
Inflow	=	0.18 cfs @	12.07 hrs,	Volume=	0.014 af		
Outflow	=	0.01 cfs @	12.91 hrs,	Volume=	0.008 af,	Atten= 93%,	Lag= 50.6 min
Discarded	=	0.01 cfs @	9.70 hrs,	Volume=	0.006 af		
Primary	=	0.01 cfs @	12.91 hrs,	Volume=	0.002 af		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 65.41' @ 12.91 hrs Surf.Area= 12 sf Storage= 220 cf

Plug-Flow detention time= 143.7 min calculated for 0.008 af (54% of inflow) Center-of-Mass det. time= 19.3 min (759.0 - 739.7)

Volume	Inve	ert Avail.St	orage	Storage D	escription	
#1	63.4	10' 2	220 cf	Subsurfa 489 cf Ove	ce Trench ST1 (erall_x 45.0% Vo	Prismatic)Listed below (Recalc) bids
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.s (cubic-	Store -feet)	Cum.Store (cubic-feet)	
63.4	40	320		0	0	
64.4	40	320		320	320	
65.4	45	1		169	489	
Device	Routing	Invert	Outlet	t Devices		
#1 #2	Discarde Primary	ed 63.40' 65.40'	1.020 6.0" x Limite	in/hr Exfi 6.0" Hor d to weir f	Itration over Suiz. Orifice/Grate	urface area C= 0.600 S

Discarded OutFlow Max=0.01 cfs @ 9.70 hrs HW=63.42' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.01 cfs @ 12.91 hrs HW=65.41' (Free Discharge) **2=Orifice/Grate** (Weir Controls 0.01 cfs @ 0.39 fps)

Summary for Pond IT: Infiltration Trench

0.131 ac, 75.70% Impervious, Inflow Depth > 6.85" for 100-year event Inflow Area = Inflow 0.99 cfs @ 12.07 hrs, Volume= = 0.075 af 0.73 cfs @ 12.12 hrs, Volume= Outflow = 0.061 af, Atten= 27%, Lag= 2.8 min 9.20 hrs, Volume= Discarded = 0.03 cfs @ 0.038 af Primary 0.70 cfs @ 12.12 hrs, Volume= 0.023 af =

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 66.05' @ 12.10 hrs Surf.Area= 1,160 sf Storage= 949 cf

Plug-Flow detention time= 162.8 min calculated for 0.061 af (82% of inflow) Center-of-Mass det. time= 91.4 min (868.5 - 777.2)

Volume	Inver	t Avail.Sto	rage Storag	ge Description	
#1	64.00	' 9!	51 cf Infiltra 2,378	ation Trench (Prist cf Overall x 40.09	smatic) Listed below (Recalc) % Voids
Elevatio (fee	on S et)	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
64.0	00	1,160	0	0	
66.0	05	1,160	2,378	2,378	
Device	Routing	Invert	Outlet Devic	ces	
#1 #2	Discarded Primary	64.00' 66.00'	1.020 in/hr 20.0' long \$	Exfiltration over Sharp-Crested Re	Surface area ectangular Weir 2 End Contraction(s)

Discarded OutFlow Max=0.03 cfs @ 9.20 hrs HW=64.02' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.60 cfs @ 12.12 hrs HW=66.04' (Free Discharge) 2=Sharp-Crested Rectangular Weir (Weir Controls 0.60 cfs @ 0.69 fps)

Appendix VII Hydrocad Output for Recharge Volume

_

		<i>,</i>
Prepared by {enter	your company name here}	
HydroCAD® 10.00-26	s/n 00711 © 2020 HydroCAD Software Solution	s LLC

Elevation	Surface	Storage	Elevation	Surface	Storage
64.00	1 160	0	65.06	1 160	/102
64.02	1,160	0 Q	65.00	1,100	501
64 04	1,100	19	65 10	1,100	510
64.06	1,100	28	65 12	1,100	520
64.08	1,100	37	65.12	1,100	520
64 10	1,100	46	65 16	1,100	538
64 12	1,160	40 56	65.18	1,100	548
64 14	1,160	65	65.20	1,100	557
64 16	1,100	74	65.20	1,100	566
64 18	1,100	84	65.22	1,100	575
64 20	1,100	03	65.24	1,100	585
64 22	1,160	102	65.28	1,100	594
64.24	1,100	102	65.20	1,100	603
64 26	1,160	121	65 32	1,100	612
64.28	1,160	130	65 34	1,100	622
64 30	1,160	130	65 36	1,100	631
64.32	1,100	1/8	65.38	1,100	640
64.34	1,100	140	65.40	1,100	650
64.36	1,100	167	65.40	1,100	659
64.38	1,100	176	65.42	1,100	668
64.40	1,100	186	65.46	1,100	677
64.40	1,100	100	65.48	1,100	687
64.42	1,100	204	65 50	1,100	606
64.44	1,100	204	65 52	1,100	705
64.40	1,100	213	65.52	1,100	705
64.40	1,100	223	65 56	1,100	715
64.50	1,100	232	65 59	1,100	724
64.52	1,100	241	65.60	1,100	733
64.54	1,100	201	65.62	1,100	752
64.50	1,100	200	65.64	1,100	752
64.50	1,100	209	65.66	1,100	701
64.62	1,100	270	65.68	1,100	780
64.62	1,100	200	65.70	1,100	780
64.66	1,100	306	65.70	1,100	703
64.68	1,100	316	65.72	1,100	807
64 70	1,100	325	65 76	1,100	817
64.72	1,100	33/	65.78	1,100	826
64.74	1,100	3/3	65.80	1,100	835
64 76	1,100	353	65.82	1,100	844
64 78	1,100	362	65.84	1,100	854
64.80	1,100	371	65.86	1,100	863
64.82	1,100	380	65.88	1,100	872
64.84	1,100	300	65.00	1,100	882
64.86	1,100	300	65.92	1,100	801
64.88	1,100	408	65.94	1,160	900
64 90	1,100	400	65.96	1,100	909
64.92	1 160	410	65.98	1 160	Q1Q
64 94	1 160	436	66.00	1 160	928
64.96	1 160	400	66 02	1 160	937
64.98	1 160	455	66 04	1 160	947
65.00	1 160	464	00.04	1,100	170
65.02	1 160	473			\ Storage b
65.04	1,160	483			
00.01	.,	100			jot infiltrat

Stage-Area-Storage for Pond IT: Infiltration Trench

pelow top of infiltration trench

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 00711 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond IF1: Infiltration Field 1

Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	
66.50	320	0	
66.55	320	1	
66.60 66.65	320	14	
66 70	320	22	
66.75	320	36	
66.80	320	43	
66.85	320	50	
66.90	320	58	
66.95	320	65	
67.00	320	72	
67.05	320	79	
07.10 67.15	320	00	
67.13	320	101	
67.25	320	108	
67.30	320	115	
67.35	320	122	
67.40	320	130	
67.45	320	137	
67.50	320	144	
67.55 67.60	305	151	
67.65	290 274	150	
67 70	259	170	
67.75	244	176	
67.80	229	181	
67.85	214	186	
67.90	198	191	
67.95	183	195	
68.00	168	199	
68.05 68.10	153	203	
68 15	123	200	
68.20	107	211	
68.25	92	214	
68.30	77	215	
68.35	62	217	
68.40	47	218	
68.45	31	219	
68.50	16	220	
68 60	1	220	
68.65	1	220	
			helow
		overnov	

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 00711 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond IF2: Infiltration Field 2

Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	
66.30	300	0	
00.35 66.40	300	/ 13	
66.45	300	20	
66.50	300	27	
66.55	300	34	
66.60	300	40	
66.65	300	47	
00.70 66.75	300	54 61	
66.80	300	68	
66.85	300	74	
66.90	300	81	
66.95	300	88	
67.00	300	95	
67.05 67.10	300	101 108	
67.15	300	115	
67.20	300	122	
67.25	300	128	
67.30	300	135	
67.35	286	142	
67.40 67.45	272	148	
67.50	243	159	
67.55	229	165	
67.60	215	170	
67.65	200	174	
67.70	186	179	
07.75 67.80	172	183	
67.85	143	190	
67.90	129	193	
67.95	115	196	
68.00	101	198	
68.05	86	200	
68.10 68.15	7 Z 58	202	
68 20	44	205	
68.25	29	205	
68.30	15	206	
68.35	1	206	
68.40	1	206	
		\ Storage	
		overno	

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 00711 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond IF3: Infiltration Field 3

Elevation	Surface	Storage	
	(sq-it)		
62.00	320	0	
02.00	320	1	
02.10	320	14	
02.15	320	22	
62.20	320	29	
02.25	320	30	
62.30	320	43	
02.30	320	50	
02.40	320	00 05	
02.40	320	00	
02.00	320	72	
02.55	320	79	
02.00	320	00	
02.00	320	94	
02.70	320	101	
02.75	320	108	
02.80 62.95	320	115	
02.00	320	122	
62.90 62.05	320	130	
02.90	320	137	
63.00 63.05	320	144	
03.05	305	151	
03.10 62.15	290	158	
03.15	2/4	104	
03.20	209	170	
03.25	244	1/0	
03.30	229	101	
03.35	214	180	
03.40	190	191	
03.43	100	195	
03.30	100	199	
03.00	103	203	
03.00	100	200	
62 70	123	209	
63.70	107	211	
63.80	92 77	214	
63.85	62	210	
63.00	47	217	
63.90	47	210	
64.00	16	219	
64.00	10	220	
04.00	1	220	
		\mathbf{A}	
		\backslash	
		\ Stora	ne below
		overn	

HANCOCK ASSOCIATES Surveyors | Engineers | Scientists

Boston, Brockton, Chelmsford, Danvers, Marlborough, Newburyport and Palmer, MA | Concord, NH 978-777-3050 / 880-998-3050 | HancockAssociates.com fine @